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The effect of undulations on the electrostatic
potential in a polyelectrolyte system
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I consider the effect of macromolecular undulation on the electrostatic potential
around a rod-like molecule. This effort is set to demonstrate the use of a particular
perturbation technique through application to a geometrical system of general
colloidal interest. The Poisson—Boltzmann equation together with a constant charge
boundary condition on the well defined surface of an undulating cylinder is
reformulated in integral equation form by use of Green’s theorem. A perturbation
solution appropriate to the deformed boundary can be extracted when the Green
function is approximated by that relevant to a reference, undeformed cylinder.
Numerical results demonstrate that undulation causes significant deviations
(increases) in electrochemical properties from expected behaviour, assuming rigid
cylindrical symmetry. By considering the total free energy of the system it is found
that electrostatics tend to diminish the extent of the undulations. The predicted
deviations are briefly discussed in light of measured intermolecular electrostatic
forces acting in a condensed phase of close-packed DNA. The perturbation technique
has potential applications to mathematically similar problems occurring in
hydrodynamics.
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1. Introduction

In the theory of Gouy & Chapman (Verwey & Overbeek 1948), use of the
Poisson—Boltzmann (PB) equation for the thermodynamical average, electrostatic
potential gives quite a reliable description of the thermodynamic properties of
electrically charged colloidal bodies in electrolyte suspensions. Comparisons made
with more exact calculations (Wennerstrom et al. 1982; Carnie & Torrie 1984;
Kjellander & Marcelja 1988) and even with direct experiment (Pashley 1981) have
shown that only under extreme conditions does this mean-field description prove
inadequate. With this overall confidence in its reliability one can then clearly point
out the singular advantage that use of the PB equation has over higher order
statistical mechanical theories: it allows for a simple examination of electrostatic
properties of a charged system.

The PB equation has been solved to give the electrostatic potential and electrolyte
distribution about and between a number of regularly shaped bodies: planes, spheres
and cylinders (e.g. White 1977; Engstrom & Wennerstrom 1978; Bloomfield et al.
1980; Chan & Chan 1983; Vlachy & McQuarrie 1985; Sengupta & Papadopoulos
1992). Regular figures of equilibrium reduce the normally partial (nonlinear)
differential equation to an ordinary (but still nonlinear) differential equation
involving only the independent variable which describes the inhomogeneity of the
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210 S. J. Miklavic

system. It is unfortunate, though, that even within this class the PB equation is
rarely solvable analytically, the nonlinearity then often leading to difficulties in a
subsequent numerical solution. Of course, dispensing with the assumption of regular
shaped surfaces forces one, from the outset, to consider numerical techniques to
obtain a solution (Gilson et al. 1987). Such intensive measures, though, bring to
question the advantages of using the mean-field model at all.

Use of the PB equation together with the assumption of regular geometry has been
ubiquitous in studies of surfactant aggregation, properties of biological cells and lipid
vesicles, and those of linear biological macromolecules such as DNA and
polypeptides. Given that these colloidal (e.g. surfactant phase structures) or
biological (especially in the case of DNA and cells) macromolecules are rarely rigid,
regularly shaped entities, it would be of some use to keep with the advantage of using
the PB equation and still describe ‘real’ systems to the best approximation possible,
even if the resulting description is then only qualitative. It is along this line of
reasoning that perturbation theory becomes one obvious model.

It is the principal aim of this paper to demonstrate the use of a particular
perturbation technique through its application to one geometrical system of general
colloidal interest. The thermodynamic mean potential about an undulating
cylindrical polyelectrolyte is obtained by solving the PB equation together with a
constant charge boundary condition on the well-defined cylinder surface. The partial
differential system can be reformulated in integral equation form by use of Green’s
theorem. A perturbation solution appropriate to the deformed boundary can be
extracted when the Green function is approximated by that relevant to the reference,
undeformed cylinder.

The circumstances of charged surfactant aggregates of the hexagonal phase
(Jonsson & Wennerstrom 1987) and of linear biological macromolecules, such as
DNA, induced to ‘aggregate’ into a condensed hexagonal array of aligned, close-
packed molecules by application of an external osmotic stress (Maniatas et al. 1974;
Rau et al. 1984), are largely responsible for the system chosen to simulate. This being
a single cylindrical-like charged body confined within a cylindrical envelope
of its near neighbours, that is, in the cell-model approximation (Hill 1956). The
necessary impetus for the calculations presented below follows on from the efforts of
others who have considered irregular shaped, charged surfaces. The recent work of
Fogden et al. (1990) and Fogden & Ninham (1991) on undulating planar surfaces
gave particular inspiration to the model developed here. Specifically, 1 give the
macromolecule a small but well-defined, ‘static’ undulation in one direction
transverse to the average axial direction. This allows me to invoke a perturbation
treatment about the rigid cylinder case, using the amplitude as a perturbation
parameter.

To my knowledge the work here is the first analytical attempt at a self-consistent
electrostatic calculation in which the influence of at least one component mode of
undulation of a charged cylindrical body is considered. In this context, however, the
model has scope for further development to which I shall allude in the text. In more
general review, despite the heavy accent on an electrochemical problem, the
perturbation technique used has potential application to many mathematically
similar problems occurring in hydrodynamics. This is timely with the increasing
appearance of studies on potential flow about regularly shaped objects, cylinders in
particular (Chew et al. 1992; Chau & Eatock-Taylor 1992) and to problems of
secondary flow induced by the motion of solid bodies (Watson 1992). These studies
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Potential about an undulating polyelectrolyte 211

can obviously be generalized to include irregularly shaped boundaries to which
perturbation theory can be applied.

In overview, the ideas are developed as follows. The next section introduces the
problem to be solved. Section 3 provides reference solutions about which
perturbations are performed. These are then described in §4. Some numerical results
and a general discussion are left to the end.

2. Problem description

The image of the two-dimensional (2D) hexagonal array of aligned molecules, lends
itself to a well defined representative model of a single molecule surrounded by a
‘wall’ of its neighbours. This can be further simplified by replacing these neighbours
with a cylindrical boundary (see figure 1). This amounts to the application of the
cell-model formalism (Marcus 1955; Hill 1956) in which a finite polyelectrolyte
concentration of aligned molecules is converted into a free cellular volume allotted
to each. In this case of average cylindrical symmetry, the cellular structure will have
the same cylindrical geometry upon pre-averaging over the positions, relative phases
and directions of undulation of neighbouring molecules, before the treatment of an
individual. A radial parameter R, defines the extent of the cell and, implicitly the
polyion concentration. Although this type of approach is quite common, the nature
of the problem to be addressed here, concerning the effect of a well defined static
undulation on the potential, provides a point of departure from usual treatments.

Let the macroion cross-sectional radius be denoted by a. It is assumed that the
macromolecule has a uniform surface charge density o, and that the uniformity is not
disturbed by structural deformation. The surrounding electrolyte gives an ionic
strength, I = 2¢%,N, 10, defining an electrostatic screening length of Ap = «71,

where
k?=1I/ec kg T, (1)

where N, is Avogadro’s number, ¢, is the bulk monovalent electrolyte concentration,
e is the unit charge, ¢, is the permittivity of free space, ¢ is the relative permittivity
of the medium, kg is Boltzmann’s constant, 7' is the temperature.

As outlined earlier, we use the mean electrostatic field model giving the potential,
Y, as the solution of the PB equation,

efV?y(r) = k* sinh (efifr(r)), (2)

where V2 is the laplacian operator and a Boltzmann distribution has been assumed

“for the charge distributions on the right-hand side. The coordinate system is such
that the z-direction is along the axis of the right circular cylindrical cell (figure 1).
Accompanying (2) are the boundary conditions which the potential, yr, must satisfy:
electroneutrality implies cell symmetry across the cell wall,

Y(r)/or=0, at r=R (3a)
and Gauss’ law at the macroion surface,
Y (ry)/on = o /e €. (3b)

In this expression the operator 9/0n denotes differentiation along the outward
normal from the region, i.e. inwards over the inner cylinder toward the origin. 7,
denotes the position vector on the surface of the inner cylinder.

Any undulations of a flexible macromolecule can be represented by or decomposed
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212 S. J. Miklavic

Figure 1. Schematic of the deformed polyelectrolyte molecule of radius @ and centreline undulation,
a cos (kz), confined within a right cylindrical shell of radius R. Within the undulating molecule is
the reference cylinder of radius r, = a—a.

4
y

.

[} X

o, cos(kz)

Figure 2. A cross-section view of the charged macromolecule in its unperturbed and its perturbed
configuration (greatly exaggerated). The polar and cartesian coordinate system is defined here.

into an infinite sum of Fourier modes, but to simplify the analysis one can, like
Fogden and co-workers (Fogden et al. 1990 ; Fogden & Ninham 1991), single out one
mode of undulation as dominant. The centre line of the polyelectrolyte is given a
cosinusoidal displacement of amplitude o« and wavelength A =2mn/k in the a-
direction: z = a cos (kz) (although, in general, one should have to supplement this
term by cosines and sines of multiples of kz, in a full series representation).
Application of simple trigonometry (figure 2) leads to the equation for the surface of
the macroion, S(r, ¢,2): ‘

S(r, p,z) = r—a{n cos (kz) cos (§)++/[1—n?* cos® (kz) sin® (¢)]} = 0. 4)
Phil. Trans. R. Soc. Lond. A (1994)
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Potential about an undulating polyelectrolyte 213

Values of a and k, representative of the undulation, are assumed small. In (4), y =
a/a. I mention here that, from 2D isotropy, all molecules would presumably have the
same fluctuation mode but, from entropic considerations, they have random phases.
In this case the unlikelihood of any two neighbours undulating in phase gives
substance to the first order approximation that the confining cell be unperturbed.

The nonlinearity of (2) and the full three-dimensionality of the system implied by
the inner boundary prevent a straightforward means of obtaining a solution.
However, for those cases where the electrostatic potential, i, is small everywhere
(i.e. || of about ky T/e) the behaviour of ¢ is acceptably described by the linear PB
equation,

Ve (r) — k™Y (r) = 0. (5)

Fortunately, for the DNA system which is implicitly considered, the amount of salt
normally present together with the combined features of ion binding and counterion
condensation, both of which effectively neutralize the DNA charge by a factor of
100(1 —f) ~ 70-90 % (Bloomfield et al. 1980), mean that this criterion may not be
difficult to meet. In the numerical examples to follow, o is taken as a product of the
bare charge expected on DNA, 1/2na{, with { being the distance between charge
bearing phosphates along the macroion (about 1.7 A, where 1 A = 107! nm), and the
factor f termed (by Manning (1978) and Bloomfield (1991)) a residual charge
fraction after counterion condensation, here set equal to 0.11, 0.24 and 0.5. The first
two values have been determined for divalent and monovalent electrolyte solutions,
respectively (although we only treat the latter case explicitly). The third case is not
intended to have any specific bearing on any one system but is mentioned only for
illustrative purposes.

Equation (5) with boundary conditions (3) at the cell wall and inner surface (4) are
to be solved and i is then used in determination of thermodynamic quantities.

In the most familiar case where the polyelectrolyte surface is assumed to be a rigid
right cylinder, equations (3) to (5) expressed in cylindrical polar coordinates would
be a separable system. In the present case, even though the differential equation
remains separable in cylindrical polar coordinates, the inner boundary prevents the
total separability of the problem. I proceed to an approximate solution by means
of perturbation theory in §4. For comparison and point of departure I first present
solutions to the unperturbed problem.

3. Reference solutions

The undisturbed case has the polyion surface simply given, defined by r = r,, say.
From axial symmetry, the corresponding potential, i, is then independent of ¢ and
z coordinates, and the partial differential equation, (5), reduces to an ordinary
differential equation in the radial variable,

difo) _ s
rdr( dr) i =0. (6)
The boundary condition (3b) is similarly simplified
dyp,/dr = — o /ee,.

The solution of the modified Helmholtz equation, (6), can readily be expressed in

Phil. Trans. R. Soc. Lond. A (1994) 10-2
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reduced potential (ef(r))

10 30 50
radial distance / A

Figure 3. Electrostatic potential in reduced units (efyr) in the unperturbed condition, as a function
of radius, Both curves correspond to an inner cylinder radius of 10 A. Two different cell radii are
considered: R = 50 A (m) and R =25 A (o). Here, and in subsequent figures (unless otherwise
stated), o = —1.65x1072Cm™ and ¢, = 0.05 M and A = 20 A.

terms of zero order modified or hyperbolic Bessel functions (Morse & Feshbach 1953 ;
Abramowitz & Stegun 1968), 1, K:

__ ¢ [Io(Kr)Kz)(KR)_Ko(Kr)I;)(KR)]
Volr) = = e Tl (cro) K yocR)—Ko(wro) Iy(<R)]

Although T have not been able to find this explicit solution for the cell-model problem
quoted in the literature, the solution of (6) for the case of an isolated cylinder is
rather well documented (Brenner & Parsegian 1974; Schellman & Stigter 1977;
Stigter 1978). The solution above is likewise straightforward to obtain. Figure 3
shows a plot of ¥, as a function of » between the cylindrical boundaries for two
different cell radii.

The perturbation method adopted below requires consideration of the Green
function for this same problem. The equation satisfied by the Green function, G,, is
again the modified Helmholtz equation, now with a point source:

ViG (r, V) —K2G (r,¥) = —4nd(r—71'). (7)

The convention of ascribing homogeneous Neumann conditions to G, corresponding
to the inhomogeneous Neumann conditions satisfied by ¢, is followed. The usual
procedure of solving (7) with the given boundary conditions is to express G, as an
eigenfunction expansion involving sums of products of the eigenfunctions of the
separable coordinates (Morse & Feshbach 1953). In cylindrical polar coordinates,

1 o0
G(r.r) = WZ j_ dp exp (ip(z—2")) exp (im(¢p—¢")) @pp(r; 1) (8)

The index m is constrained to be an integer from periodicity whereas for an infinite
right cylinder, p is a continuous variable. The function @,,,(r,7") is to be determined.
The delta function on the right-hand side of (7) has the following expansion in these
coordinates:

@ . R e . Lo O(r—r’

S exp (im(g—¢ >>f dp exp (ipe—2) )

m=—0o0 —00

o(r—r) =

(2m)*

Phil. Trans. R. Soc. Lond. A (1994)
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Inserting this into (7), multiplying by exp (—iqz) and exp (—in¢) and integrating over
the variable ranges ze(—o00,00) and ¢€[0,2n] leads to an inhomogeneous Bessel
equation for @, ,(r,7),

d@,., ., M _ o(r—r")
rdr( dr) (p+7 Qp = —4m v

with y2 = «k*+p® The solution satisfying boundary conditions and the jump
discontinuity in the derivative of @ across r =’, which gives rise to the delta
function source, is

, —4n
Qmp(7“>7‘)=W9(D(7<)qm(’>), (10)

where r_(r. ) takes the value of r or 7, depending on which takes on the lesser (greater)
value. ¢ and ¢® are two linearly independent solutions of the homogeneous
differential equation adjusted to satisfy the homogeneous boundary conditions at 7,
and R respectively,

q(l)(r) = Im(’y;z 7') K;n(yp 7'0) _Km(yp 7') I;n(yp 70)’1 (1 1)
q2(r) = Ly, ") Koy, B) = K, 1) In(7, R). |

The wronskian of the two solutions, W(qV, ¢®), evaluated at »’, provides the correct
normalization. Inserting (11) into W(g®, ¢®),

W(g,q%) = V(@) (P @) —¢P@) (P @), at =7

performing the indicated derivatives, expanding the products and recollecting terms
will show that W can be rewritten as

W(q(l)’ q(z)) = ’)/p W(Inme) Amp’
where (Arfken 1970)

Wl Ky) = Ly () K7y (%) — Koy (@) (%) = — 1/ (12)
is the wronskian for the hyperbolic Bessel functions of order m, I,,(x) and K, (x), and
Amp =I;n(ypro)K;n(VpR)_I;n('pr)K;n(?’pro) (13)

is a factor independent of the variable ', depending only on the inner and outer
limits, r, and R.
Thus, the solution (10), becomes

, 4r
Qmp(’rar ) = —q(l)(’r<)q(2)(r>)' (14)
Ay
The connection between the Green function, (8) with (14), and my earlier solution
for i, is made through Green’s theorem:

P(r) =ﬁfs+s G (r, P )V, (). ds—4i Y )V, Gr, 1) ds, (15)

Si+S,

where S;+S, denotes the total surface enclosing the volume interior (the annular
region bounded between the inner and outer cylinders). In these integrals, ¥’ denotes
the source point on the surface of one of the two cylinders. The elements of surface
area, ds, are directed away from the interior volume. Equation (15) forms the basis

Phil. Trans. R. Soc. Lond. A (1994)
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for an approximate solution to the undulating polyion problem. For the moment,
with the respective Neumann boundary conditions on G, and ¥, on the inner and
outer surfaces, (15) reduces to

1 o ,
z100(") =H —GK(r,r)ds,

s; €€o
where for a uniform surface charge distribution, all the ¢’ and 2" integrals vanish from
symmetry, except the case of p = m = 0. Setting r, = @ and again using property (12)
on ¢V in (11) leads to my earlier expression for i,.

4. The perturbed problem

With the sinusoidal z dependence of the centre line, leading to (4) for the equation
of the surface, the boundary condition, (3b),

V8-V =|VS|o/ee, (16)

with (5) results in a non-separable partial differential system. To avoid solving the
differential problem directly (if it were possible) we proceed along an alternative
approximate, but more direct, route suggested in Morse & Feshbach (1953), based on
the integral equation (15). Were one in possession of the appropriate exact Green
function for the perturbed boundary, then (15) would have led to as simple an
integral representation as for the above rigid cylinder case. Instead, we take the
approximate step of using the Green function given by (8) together with (14) which
satisfies the same differential equation and appropriate homogeneous boundary
conditions but only when evaluated on the surface of a rigid, reference cylinder of some
radius, 7y < a—a. In such a circumstance the volume of validity of this Green
function contains the real volume of our interest although the eigenfunctions of the
expansion are no longer orthonormal when restricted to the perturbed region. The
practical price to pay is that, with this G,, the second term of (15) does not vanish
identically, but instead one has an inhomogeneous integral equation to solve.

In preparation for the outlined task, the expression for G, in (8) needs to be
modified to be consistent with the case of a periodic z-structure. The z contribution
to the delta function in (9) should be replaced by the expression corresponding to a
periodic generalized function,

0z—2) = % > exp (ipk(z—2")),

p=—c0

having the same periodicity, 2n/k, as the cylinder undulation. Thus,

/ k ’ ’ ’
GK(I‘, r ) = —_EZ €, COS (Pk(z_z )) Zem COo8 (m(¢_¢ )) Qmp(T: r ), (17)
2m)* m

with €,,, = 1 if p(m) = 0, and 2 otherwise. ¢,,,(r,7’) is unchanged except that p in

(14) and in the expression for y,, is replaced by pk, with p now an integer.
Further identifications are necessary. The boundary shape has the following

expansion:

S(T,¢,Z)=V—Q—QF(¢,Z), (180/)
with F(¢,z) = 5 cos (kz) cos (¢p)— X

n=1

[1]772" cos?™ (kz) sin®" (). (18b)

2
n

Phil. Trans. R. Soc. Lond. A (1994)
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In addition, for any function ¢ (in our case G, or ),

d 3 OF oF
Vo(r)-ds = 2 ds = (%f‘ﬁz%é?&_ 226) dg dz, (19)

which is to be evaluated on the surface S(r, ¢, z). Condition (16) becomes

(T
%ds = —66—0|Vb| rd¢dz, (20)
where, to third order in 7,
VS| = 14+ [(ka)? sin® (kz) cos? (¢)+ (a/r)? cos® (kz) sin® (¢)]
+ 92 cos (kz) cos (¢) sin? (@) [(a/7)? cos?® (kz)— (ka)? sin® (kz)]. (21)

The remaining explicit and implicit » dependence in (19)—(21) can be eliminated by
appeal to (18) and to the following expansion (also given to third order):

(a/r)* = 1 =27 cos (kz) cos (@) +5? cos? (kz) [sin® (¢) +3 cos® (¢)]
—® cos® (kz) [4 cos® (¢p)+ 3 sin? (P) cos (4)].  (22)

Expressions for 0F/0¢ and 0F/0z also follow directly from (18b). The partial
derivatives of G,, which are needed when G, is substituted in (19) in place of ¢, are
equally straightforward from (14) and (17).

In view of G, being approximate, (15) remains a full integral equation which can
in principle be solved to any desired order by successive substitution/iteration. What
is immediately apparent is that with each substitution (and integral to be evaluated)
the »” argument of @,,, must be replaced by a+aF(¢’,2), introducing a convoluted
perturbation expansion/integration procedure. What is anticipated, and confirmed
numerically later, is that for small & and £ one need only explicitly consider the first
iterate solution.

The eventual function must reflect the periodicity and symmetry of the
perturbation: periodic in ¢ and z; symmetric about ¢ =0 and z = 0; and ‘cross-
periodicity’, ¥ (r, ¢,2) = (r,p+m,2+3A). As is common with perturbation expan-
sions, successively higher orders of 7 bring in higher order harmonics of the
fundamental, giving ever finer detail to the solution. In fact it can be established
from the prescription below that periodicity and symmetry can be preserved by
terms of odd order of 9 containing combinations of odd harmonics up the power of
7, and likewise by terms of even orders involving combinations of even harmonics.
Considering, in turn, the inhomogeneous term as a zero order approximation (i = 0)
and first iterate as a first order correction (¢ = 1), the potential from either has the
form

YO = FO) +1fD (1) cos (kz) cos (@) +7*(fEV )+ (r) cos (29)
+fE(r) cos (2kz) +f{22(r) cos (2kz) cos (26))+0(7°).  (23)

The inhomogeneous term,

o k
4mee, (211'.

yO(r) =

2n/k
Z emepj dzf d¢p’ cos (m(p—¢’) cos (pk(z—2"))

XAQup(rs ") IV s 4,2ys (24)
Phil. Trans. R. Soc. Lond. A (1994)
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can be evaluated approximately by means of expansion (18) for +’, (21) for |VS|, and
by using a Taylor series expansion of @,,,(r,a+aF(¢’,2")) in 7 (or equivalently a):

Qup(r,a+al(p,2)) 277 Q‘”’ r,a;P,z)

with Q) = - Pyl e |
aﬂn mp | lp=0>

where the ¢ and z dependence is now external to the Bessel functions. Written
explicitly, the first few terms are

S T4 a)

QW =4 ’
» Amp
QY = 4EW(ypa) cos (kz') cos (¢")
and "
Qp = wwp a) T (a) cos? (¢') — T{"P(a) sin® (¢")] cos® (k2),

mp

where 4, is defined by (13) and

TP (@) = g0 (@) = L (v, ) K3 (7, 70) =K (v, 2) L (v, 7o),
TP (@) = I (v, )K' (Vpro) =KD (vp @) L (v, 1),
S(mp)( ) = (1(2)(95) ( )K;n(’)/pR)_—Km(’)/px)I;n(YpR)a
S (x) = I (7, @) Ko, (VpR)—K%"(vp ) L, (v, R).
Superscripts on the Bessel functions denote differentiations. With all these
expansions in place, multiplication, recollection of terms of powers of 3 and
straightforward evaluation of the z” and ¢’ integrals results in only the m = p =0
term surviving at zero order; the m = p = 1 term surviving at order 3; the m, p = 0, 2

terms surviving at order #*; m, p =1, 3 surviving at order #°, etc. To second
order, one arrives at the following expressions for the coefficients of (23):

7a TV (a) S0 (r)

(25)

iy = T, 26a)
0 0
fP(r) = :_;) ((y, @) T<1u>(a)jT8“’(a)) SS“’(?‘), 260
S8 = T (70 @) T (@) + (@) T () + () T () S0 )
660 ’ ' 0 84,0
JE0) = C2 (o @ T )+3(7’oa)T§°2)(a)+(ka)zTSOZ’(a))b;gj)(r),
S(%)(Z: (260)
feR () <<v a2 TEY (@) + (v, @) TEO (@) — (ka)? TEO (@) =~
84,,
1) =fﬁ((navT;22><a>+3ma>T{%)—<ka>2T322><a>>S—322’(”.
€€ 8A22 )
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One iteration involving the homogeneous term in (15) represents a first order
correction to the above; for convenience this will be denoted by 4y ™ (r). From (19)
we get

1 k 2n/k 27
AYD(r) = 1 @) mEp €m €p L dz’ L d¢'{§”(r

anp r,7)

X [cos (pk(z—2")) cos (m(p—¢"))

a or
—ﬁmcos(pk(z—z sin (m(¢— @) @ p(r,7") a¢

—apk sin (pk(z—2")) cos (m(p—¢")) @ p(7,7") aF/Gz] }S(,,,gﬁ,’z,). (27)

Insertion of a suitable estimate for /() can then be followed by an analogous
manipulation of expansions (18)—(21). Because this term would normally vanish with
use of the true Green function, and because the Green function that is actually used
satisfies the right properties on a reference surface which, for not too large values of
a and k, will not be so grossly different from the surface under study, one should
expect that this term will be small in comparison with (24). Indeed, the dominant
contribution at each order of 5, within Ay®, will come from the dominant
contribution to @, that is, f{®. Consequently, in (27) I have used expression (26a)
evaluated at r = a, and again made use of expansions (18), (21), (22) and the Taylor
series for ) above, and that for 6¢) = 0@ /0r below. In the expansion

0Q (1, a+al ($,2)) Z’” 3Q(”’ (r,a;¢,0),

the first three terms are

J(m D) (mp)
R i L L

mp

ngp)(;) Tm?) (q) (y,a)? cos (kz') cos (¢)

mp

a?oQy, = 4n

and

3.9)(2) (,},pa)zsgmp)(r) (mp) 2 (s (mp) WY 2 (1.,

a’oQ, = 4n——A————[(yp a) T{P) () cos? (¢')— TP (a) sin® (¢p')] cos? (k2').
mp

With this procedure the correction terms that result are again those of the form of

(23) with coefficient functions

J(00) (00) (00) J(00)
F0) = 22y T (Cjo‘ @S0, (280a)
00

eeo

aa TP () 8P (a) ((y, @) T§ (@) + (v, @) TV (@) — (1 + (ka)?) T4V (a))

S(ll)
€€y Ago 44,, o (1)

(28b)

f00) =
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_ 0a T (@) SV (a)

T ee, 84, (via),

FEO) = (7@ TEO @)+ (o) TE(@) = T ()] S$V(r)/ Ao,
SEV) = Ty @ TEP (@) +3(yy) (@) = 3T (@)] SV (1) Ay,
SED() = Tl 0P TE (@) + (o) TE(@) = (14 4(ka)®) TR (@) SEV0)/ Ay, (280)
SE) = Ty 0 TE(a)+5(y, @) T2 (@)~ (3-+ 4(ka)?) T (a)

—8(ka)? ngz)( q(22) )/ A3,

Equations (26) and (28) together are the desired results. However, before
embarking on a numerical description of their meaning, there are some comments
worth making.

Firstly, it should have been noted that (26a) is not identical to the undisturbed
solution, yr,, quoted earlier. Now, it appears that (28 a) presents a non-zero correction
to the order unity term. The reason is that both (26a) and (284d) still retain some
knowledge of the perturbation, through r,. If one were to set r,=a in these,
then f§” would reduce to i, after an application of (12) to Tj(a), and f{® would
vanish because of the 7}(a) term. Clearly then (26 ) is truly an order unity term while
(28a) is implicitly of order 5. This feature has the interpretation that (26) with (28)
does not represent a true explicit power series solution of ¢ in # (or ). This is actually
advantageous because it effectively increases the radius of convergence of the
expansion i.e. the expansion remains valid to larger values of 7 than it would
otherwise for a straight power series (Morse & Feshbach 1953).

A second comment following from this concerns the question of sufficiency of using
only the first iterate on the integral equation (and even that one approximate) as a
correction. Although I have made no analytical effort to establish the validity of this
approximation, a numerical comparison of the individual terms of 4y® with those
of Y@ does justify taking this step: corresponding terms of the correction are
normally found to be at least an order of magnitude smaller than those of the latter.
This is found to be the case under the numerical conditions shown below.

Finally, while the perturbation results have been quoted to second order in 7, the
numerical results presented in §4 include third order terms in both the zero order
approximation and first order correction. (They have been excluded from the text for
typographical convenience.) Use was made of recurrence properties, polynomial
approximations and asymptotic expansions to get the most efficient and accurate
evaluation of the hyperbolic Bessel functions of high orders and their derivatives
(see Abramowitz & Stegun 1968).

5. Numerical calculations and discussions

The preceding analysis dealt with solving, by perturbation method, the modified
Helmholtz equation subject to Neumann boundary conditions. However, the means
used is not restricted to the present electrochemical context; other governing
physical equations and boundary conditions are equally well tractable. With this
more general philosophy in mind, I consider in the numerical illustrations below, the
character of undulations which provide sufficient deviations to illustrate the extent
of and direction in which they influence properties of the electrochemical system,
while at the same time giving confidence to the convergence of the perturbation
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expansion. The latter, incidently, has only been monitored numerically. For the
purpose of illustration, I shall pay less heed to keeping with the assumption of small
potentials required to justify using the linear PB equation. In fact, for curved
geometries, under some reasonable set of conditions, the error consequently
entertained is still small compared with the magnitude of the true potential (Verwey
& Overbeek 1948). The dependences I therefore demonstrate are, at the least,
qualitatively correct.

It is at once evident that undulation affects the electrostatic potential by
increasing its magnitude, on average, throughout the entire region. Indeed, even for
those chosen cases of salt concentration, (residual) surface charge density and cell
radii for which the potential for the undeformed cylinder is low (i.e. /| < 25 mV), it
only remains low for very small values of % (y <0.1). As was said, this has no
relevance to the perturbation technique, but reflects only on the ethics of using the
basic linear equation. It does mean that for more quantitative results one should
eventually consider the more consistent use of the full nonlinear equation, for whose
solution the same effects will remain.

There are many ways of incorporating flexible polyelectrolyte effects into double
layer theories. Predominant among these is to treat them as either individual point
(or small) charged particles connected by a phantom link (Valleau 1989; Akesson
et al. 1989; Miklavic ef al. 1990; Woodward and Jonsson 1991) or as an ‘ideal’
continuum line of charge (Muthukumar 1987; van Opheusden 1988; Podgornik 1990,
1991, 1992). However, in view of our general findings, by treating the macromolecule
on near equal footing to the mobile ions one is certain to overestimate the screening
ability of the electrolyte: the predicted potential is lower than it should otherwise be.
Because, to this order of theory, the mean potential about colloidal or biological
macroions determines many of their solution related properties such as macro-
molecular conformation, ion distribution, ion binding, etc., estimations of
magnitude based on these more ideal descriptions may be grossly in error.

As is often the case, ratios of characteristic length scales determine where and when
idealized descriptions can be invoked. Certainly, at distances larger than the
molecular size, ‘ contour strings’ of charge may give equally adequate description on
some qualitative level. However, it is more often the case that certain properties (e.g.
macromolecular interaction as in the close packed DNA system) become interesting
at distances of the order of the macromolecular size or smaller. At these distances
there is then clearly a need to distinguish between mobile electrolytes
and charged macromolecules. With ‘point particle’ and ‘contour string of
charge’ descriptions becoming invalid at small macroion separations, what can be
said of the other extreme? Two situations come to mind where ideality of shape
ceases to be a valid assumption. One of these is with macromolecules, such as DNA,
which are rough, but regular on a molecular scale. The other is in thermodynamic
studies of reasonably stiff macromolecules, again such as DNA, or fluid-like macro-
molecular assemblies, like surfactant aggregates in hexagonal phase. These are
usually (and inappropriately) considered as rigid (cylinders). A further feature
(presently ignored) which arises naturally in the latter case, is that the stiffness (here
measured by the wavenumber k) is generally solution dependent. As mentioned
earlier, any general undulation consists of an infinite composition of Fourier modes.
I have singled out for study one finite mode; its wavelength, A, I deliberately
wish to distinguish from any persistence length scale which can be (and is definitely
so for DNA) very much larger.
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Figure 4. Electrostatic potential in reduced units (efy) on _the surface of the macroion, along the
ray ¢ = 0, as a function of axial distance, a = 10A,a=2A R=50A: ¢, =0.05M(O0),c,=0.1Mm

(m).

The need for any consideration of shape irregularities is to be qualified according
to the characteristic length scales of each individual system. When the contour
charge spacing, ¢, is much larger than the Debye length, i.e. k{ > 1, then electrolyte
screening is so efficient that the electrostatic contribution to the physical chemistry
is negligible, and entropic (Helfrich & Harbich 1985) or mechanical (Manning 1989)
considerations regarding undulations of neutral bodies alone dominate. For instances
of extremely dilute electrolytes for which x{ <1 and yet k/k <1 with small
amplitude, the hypothesis of a rigid straight cylinder is likely to be sufficient. But
what then is the situation when both the wavelength and linear charge spacing is
comparable to the Debye length ? In the remaining discourse I consider effects where
these ratios, «{ and k/k, and Ly/{ (where the Bjerrum length, Ly = €*8/(4mee,) =
7.14 A in water at 25 °C) are of order unity.

In the cases where L k approaches unity, regions of negative curvature, i.e. where
the charged surface is bent toward itself, certainly have a higher local potential than
regions of positive curvature. This is exhibited in figure 4 which shows the potential
on the macroion for one wavelength (here and below A = 20 A) of the surface along
the ray, ¢ = 0 (for ¢, = 0.05 M, A;;/A = 0.68). The increase in magnitude matches the
trough in the surface undulation. Reasoning from the dimensionless ratio k/«, (or
better Ap/A), this effect would be reduced by electrolyte screening, although this is
not yet obvious with the increase in electrolyte to 0.1 M, shown in figure 4 (Ap/A =
0.48). From a biophysical viewpoint surface potentials are important in that they
determine local electrolyte concentrations, including the distribution of potential-
determining-ions, which play the special role of specific binders to dissociable surface
groups (Ninham & Parsegian 1971); the increase in surface potential in these crevices
would lead to an enhanced binding of these ions, above that predicted from rigid
cylinder geometry (in a self-consistent sense).

Under any given set of conditions the effect of macroion curvature on the shape of
the potential function is seen to diminish at larger distances from the surface; for the
ray ¢ = 0, this is shown in figure 5. However, it is significant that compared with the
potential determined with the unperturbed geometry at equivalent radii, the
magnitude remains consistently larger. At large enough distances, surface details are
unimportant and similar values can be obtained using effective macroion properties.
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0r
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Figure 5. Electrostatic potential in reduced units (efy) as a function of axial distance, ¢ = 0. The
different curves, from top to bottom, correspond to radii of 50, 30, 20, 16 and 12 A. The
accompanying symbols in the figure centre represent, for comparison at these same distances, the
potential in the unperturbed condition. The additional, lowermost symbol gives the potential at
the inner surface.

The unidirectional nature of our assumed undulation is ideal for study for it
reveals the angular extent of the perturbation. This is demonstrated in figure 6 which
particularizes to the potential at the cell wall. At ¢ =n/2, the cylinder has
zero curvature in the direction along the z axis. Here the potential value is least
of all ¢ (for all re[a, R]), increasing on either side to maximum values at ¢ = 0 and
7. This increase toward 0 and = is accompanied by an increasing variation with z as
r decreases in value. (There is no significant dependence on z at any r, for ¢ = n/2;
data not shown.) One may speculate that the maxima at 0 and © are due primarily
to the fact that along these directions the undulation effectively brings the charged
surface closer to the cell walli.e. giving the appearance of a larger macroion. To some
extent this is true; compare the value of efyr(R) obtained with an unperturbed
cylinder of radius 12 A, —0.038, with the ¢- averaged value of —0.039 found with a
eylinder of @ = 10 A and « = 2 A. Alternatively, the value of —0.038 could also be
found with a rigid cylinder having an effectively higher surface charge.

Within this cell model of the electrical double layer it can be shown that the
osmotic pressure due to the double layer, P, is proportional to the total
concentration of the mobile ions found at the cell wall, less the concentration of bulk
electrolyte (Wennerstrom et al. 1982; Israelachvili 1991). This is an exact statistical
mechanical result which carries over to the Gouy—Chapman approximation and is
interpreted as the force per unit area per pair of macroions. Depending on the
physical origin of the given undulation, whether arising from intrinsic surface
roughness or from thermodynamic considerations of allowed conformation, this
pressure should not be considered as the sole contribution to the total force. (For the
latter possibility, another important term comes from the reduced entropy of
confined undulations.) Regardless, it is still worthwhile to question what changes
oceur in P, when the surface is deformed. In the linear theory, P, is proportional
to the square of the potential at the boundary, P, = Iiy*(cell)/2kT (Verwey &
Overbeek 1948; Israelachvili 1991). For a comparison with ¢ (R), the potential on
the cell wall must be averaged over the polar angle, ¢, {}/*);; note from figure 5 that
the value is seen to be all but independent of z (the case for each ¢). This comparison
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Figure 6. Electrostatic potential in reduced units (¢fy) at the cell wall as a function of polar angle

¢. Different curves correspond to the parameter sets a = 10 A a=2A, R=50A (o), same a and
awithR=25A (m ya=10A, a=3A and R = 50 A (v).

osmotic pressure increase A%

amplitude, a./ A

Figure 7. Relative percentage increase in osmotic pressure (%) in the undulating case (¢- averaged)
over the unperturbed system. Data shown correspond to dimensions a=10A, R =50A
(o) and R = 25 A (m).

of osmotic pressure is plotted in figure 7 as a percentage relative difference in 1 or
equivalently Py, that is, 100(<y/*>, —3) /1, as a function of undulation amplitude,
for cell radii at 25 A and 50 A. By plotting the osmotic pressure in this relative way
one eliminates, within linear theory, the dependence on the surface charge. The
results shown are therefore valid for f = 0.11, 0.24 and 0.5. For the nonlinear PB
equation, the surface charge dependence would only be approximately eliminated.

From the figure it is clear that even with the rather low levels of undulation, to
which one can reasonably refer as a perturbation, there is significant departure
from the reference osmotic pressure. Moreover, the same extent of undulation, if
present at smaller separations, leads to larger deviations. What figure 7 suggests is
that the presence of any finite macroion undulation enhances the range of the
electrostatic interaction between a pair of molecules. Not surprisingly, just as
increasing electrolyte concentration reduces the double layer interaction at a finite
separation, by reducing the extent of the double layer, so too does it reduce the
osmotic pressure deviation at any given separation (data not shown). The feature of
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enhanced electrostatic interaction has been pointed out as being responsible for the
extended range of forces between aligned DNA molecules in univalent salt solutions
(Podgornik et al. 1989). Although I sought a direct comparison with those measured
forces using the model presented here, such was, unfortunately, not immediately
forthcoming. By matching X-ray diffraction intensities to gaussian distributions,
Podgornik et al. (1989) calculated the root mean square size of fluctuations of the
DNA molecules about their equilibrium positions. They attributed these fluctuations
strictly to undulations, the size of which was inherently related to the amplitude
I used, o, and ranged between 5 and 10 A. These values regrettably exceed the
limitations of the perturbation approach. Despite this, the results are qualitatively
consistent with their findings, and encourage further analysis in seeking to relate the
model to these experiments.

So far I have treated the amplitude (and wavenumber too) as a parameter and
studied the effects of undulation on double layer properties. As a final illustrative
calculation I consider the contrary: to what extent does the double layer influence
macromolecular undulation ? One satisfactory way to estimate this extent is through
statistical thermodynamic arguments. Here, one considers the double layer free
energy which, for a constant charge surface, is given by the expression (Verwey &

Overbeek 1948)
J dSJ Ysurt(0”) do’ (29)
surf 0

In the linear double layer model it is trivial to evaluate the surface charging
integration, as the potential is linear in charge density; if one takes r = @ in the
argument of the integrand, the surface integral is then also simple and one can get
a leading estimate to (29). As a result of these integrations we get the expression

27'c oa 2

Z f(O) +77 f(20)

In the analysis of degree of double layer influence on macromolecular undulation,
one should consider the free energy difference between the charged undulating
cylinder and the uncharged undulating cylinder. For the latter case, (29) vanishes
and so this double layer free energy difference is (29) itself for the charged case alone.
As a contribution to the total free energy of a system which permits a distribution
of amplitudes, (29) must be balanced against the free energy change owing to
restricted undulation, given in this context simply by —k7' In (a¢/a,), where o is the
assumed amplitude of unrestrained undulation for an uncharged cylinder, whereas a
is the operative amplitude. These two individual contributions are shown in figure 8
for a number of conditions of charge and cell size. For convenience, the double layer
contribution is plotted as a free energy difference relative to the unperturbed,
charged case, whose value for each condition is provided in the figure caption.

Like previous results this figure is self-explanatory. The double layer free energy
contribution is least when the cylinder is straight whereas the undulation entropy is
infinite at this extreme. In confirmation of what was already said, at low or zero
surface charges (e.g. the case of f = 0.11) the total free energy is dominated by the
undulation entropy term and the free energy minimum lies at the greatest
undulation amplitude, @ = o, = 5 A. At finite o, the minimum shifts to smaller
values of a for any, even infinite, R (there being very little difference between the
results using R = 50 A and R = 100 A): the greater the surface charge, the smaller
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free energy contributions / kT

amplitude, o/ A
Figure 8. Contributions to the system free energy change, plotted as a function of «, of a charged
undulai&ing cylinder of amplitude « relative to an uncharged, undulating cylinder of amplitude
=5 A. The double layer contribution is shown relative to the straight cylinder free energy, F9
Data shown correspond to cylinder dimension @ = 10 A. In order of i increasing magnitude, the solld
lines with superimposed open diamonds refer to: f = 0.11, R = 50 A Y, =0.522 kT, 2, =5 A)

f=024, R=50A (F, =249KkT, o, S45A); f=05 R=50A (F°, = 10.79kT, a,,,, 2 2 A).

The dot-dashed line relates to the latter case but at a concentration of 0.2 m (F}, = 6.46 kT
A A 3.0 A). The dashed line corresponds to the condition f= 0.5, R = 25 A c,=0.05m (F,
13.95 kT, ot pin < 2 A). The undulation entropy —kT In (a/e,) is shown by the dotted line.

the amplitude for which the free energy is a minimum. However, it is impossible to
imagine a (realistic) surface charge large enough to dominate over the diverging
entropy term and so favour a completely straight cylinder. As the cell radius
decreases, this ‘optimum’ amplitude (listed in the caption) also decreases. Clearly,
the presence of a surface charge tends to ‘straighten out’ the cylinder, even when it
is in isolation. Moreover, as the macromolecules are made to approach one another,
it becomes unfavourable for their double layers to remain so extended and thus,
significantly overlapping; equilibrium is re-established at a smaller amplitude. In
circumstances such as these, when there is allowance for the amplitude to respond
self-consistently to double layer changes, leading to these two contributions to the
free energy, there will be an additional repulsive contribution to the net force
(pressure), having its origin in the double layer induced constriction of undulations.
I leave to future publication an explicit numerical study of this contribution.

6. Summary

The effect of macromolecular undulation on the electrostatic potential around a
rod-like molecule is solved by perturbation technique. The Poisson-Boltzmann
equation together with a constant charge boundary condition on the well-defined
surface of an undulating cylinder is reformulated in integral equation form by use of
Green’s theorem. The perturbation solution appropriate to the deformed boundary
is found by approximating the Green function with one relevant to a reference,
undeformed cylinder. Numerical results demonstrate that undulation causes
significant deviations (increases) in such electrochemical properties as the double
layer potential, osmotic pressure and free energy, from those relevant to a rigid
cylinder. Measured intermolecular electrostatic forces acting in a condensed phase of
close-packed DNA are consistent with expectations of this model. Comparison of
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double layer free energy with undulation entropy show that electrostatics tend to
suppress undulations, and that this suppression increases with increasing surface
charge and decreasing intermolecular separation.
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